Molar Excess Volumes of Binary and Ternary Mixtures Containing Chloroaniline

Vinod Kumar Sharma,* Prem Paul Singh, and Sanjeev Maken

Department of Chemistry, Maharshi Dayanand University, Rohtak-124 001, India

Molar excess volumes, $V^{\rm E}$, for *m*-chloroaniline + benzene, + toluene, + *o*-xylene, + *m*-xylene, and + *p*-xylene, *m*-chloroaniline + benzene + toluene, and *m*-chloroaniline + benzene + *o*-xylene have been measured as a function of composition at 308.15 K. $V^{\rm E}$ values for the binary mixtures are negative for all the systems over the entire range of composition and for an equimolar composition vary in the order *o*-xylene > toluene > *m*-xylene > benzene > *p*-xylene. On the other hand while $V^{\rm E}$ values for *m*-chloroaniline + benzene + toluene are negative over the whole composition range, those for *m*-chloroaniline + benzene + *o*-xylene vary from positive to negative depending on the mole fraction of each of the components.

Introduction

A binary mixture is formed by the replacements of like contacts in the pure state by unlike contacts in the mixture. Consequently if interactions in a ternary i + j + k mixture are closely dependent on the interactions in i + j, j + k, and k + i mixtures, then it appears that it should be possible to predict V_{ijk}^{E} values of ternary mixture from the corresponding data for constituent binary mixtures.

Experimental Section

m-Chloroaniline (Aldrich, purris-quality with a stated purity of >99 mol %) was used without further purification. Benzene (Ranbaxy, analytical reagent grade) was purified (1) of thiophene by shaking it with 15% of its volume of concentrated sulfuric acid. It was then shaken with 10%sodium carbonate solution, washed with distilled water, dried over anhydrous calcium chloride, and then fractionally distilled and stored over sodium wire. Toluene, o-xylene, and m-xylene (Ranbaxy, analytical reagent grade) were purified in the same manner as described for benzene except that during shaking with concentrated sulfuric acid the temperature was kept below 30 °C (1) by occasional cooling. The purities of the purified compounds were checked by measuring their densities at 298.15 ± 0.01 K, and these agreed to within $\pm 5 \times 10^{-5}$ g cm⁻³ with their corresponding literature values (2-5) as reported in Table 1.

Molar excess volumes for binary and ternary mixtures were measured in a V-shaped dilatometer explained elsewhere (6). The temperature of the water thermostat was controlled to 0.01 K. The change in the level of the liquid in the dilatometer was measured by a cathetometer with a precision of ± 0.001 cm. The uncertainty in our measured $V^{\rm E}$ values is 0.003 cm³ mol⁻¹ at the worst.

Results and Discussion

The molar excess volumes V^{E} for various binary and ternary mixtures are given in Tables 2 and 3 and plotted in Figures 1 and 2. The V^{E} values for binary mixtures were Table 1. Densities at 298.15 K

material	density/(gm·cm ⁻³)			density/(gm·cm ⁻³)	
	present work	lit.	material	present work	lit.
benzene	0.873 75	0.873 72 (2)	p-xylene	0.856 70	0.856 73 (4)
toluene	0.862 21	0.862 24 (3)	<i>m</i> -xylene	0.860 01	0.859 99 (4)
o-xylene	0.875 85	0.875 83 (3)	<i>m</i> -chloro- aniline	1.216 03ª	1.216 06 (5)

Figure 1. Molar excess volumes, V^{E} , of the *m*-chloroaniline (1) + benzene (2) + toluene (3) mixture at 308.15 K.

fitted to the equation

$$V^{\rm E}/({\rm cm}^3 \cdot {\rm mol}^{-1}) = x_1 x_2 [\sum_{n=0}^2 A(n)(x_1 - x_2)^n]$$
 (1)

where x_1 is the mole fraction of component 1 and A(n) (n = 0-2) are parameters that were evaluated by the method of least squares. The values are recorded together with the standard deviation $\sigma(V^{\text{E}})$ of V^{E} defined by

$$\sigma(V^{\rm E}) = \{ [\sum (V^{\rm E} - V^{\rm E}({\rm calcd})]/(m-n) \}^{0.5}$$
(2)

where $V^{\rm E}$ is the experimentally measured value of $V^{\rm E}$ and $V^{\rm E}$ (calcd) is the value calculated from eq 1, *m* is the number of experimental values, and *n* is the number of adjustable parameters in eq 1, in Table 2.

© 1994 American Chemical Society

^{*} To whom correspondence should be addressed.

Table 2. Molar Excess Volumes of Binary Systems and Parameters in Equation 1 Along with Standard Deviations $\sigma(V^{\rm E})$ at 308.15 K

$\boldsymbol{x_1}$	$V^{\mathbf{E}}/(\mathbf{cm^{3}\cdot mol^{-1}})$	\boldsymbol{x}_1	$V^{\mathbf{E}}/(\mathbf{cm^{3}\cdot mol^{-1}})$					
m-Chloroaniline (1) + Benzene (2)								
0.0724	-0.101	0.5568	-0.439					
0.1842	-0.262	0.5913	-0.417					
0 2846	-0.376	0.6748	-0.349					
0.4246	-0.460	0.7591	-0.253					
0.4240	-0.464	0.1001	_0.160					
0.4001	-0.404	0.0040	0.100					
0.5124	-0.459	0.9125	-0.007					
A(0) = -1.834, A(1) = 0.416, A(2) = 0.929								
	$\sigma(V^2) = 0.00$	2 cmº mol-						
	<i>m</i> -Chloroaniline	(1) + Toluen	e (2)					
0.0852	-0.131	0.4736	-0.401					
0.1452	-0.208	0.5826	-0.385					
0.2207	-0.281	0.6518	-0.352					
0.2884	-0.335	0.7415	-0.291					
0.3915	-0.387	0.8352	-0.207					
0.4382	-0.393	0.9216	-0.106					
A(0) = -1.591, A(1) = 0.112, A(2) = 0.033								
	$\sigma(V^{\rm E})=0.00$	02 cm ³ mol ⁻¹						
	<i>m</i> -Chloroaniline ((1) + o-Xyler	ne (2)					
0.1216	-0.094	0.5358	-0.227					
0.2439	-0.168	0.5886	-0.226					
0.2926	-0.183	0.6473	-0.209					
0.3374	-0.200	0.7154	-0.191					
0.4186	-0.213	0.8206	-0.142					
0.4627	-0.229	0.9127	-0.076					
	A(0) = -0.912, $A(1) =$	-0.052. A(2) = 0.030					
	$\sigma(V^{\rm E}) = 0.00$	$2 \text{ cm}^3 \text{ mol}^{-1}$,					
	<i>m</i> -Chloroaniline ((1) + p -Xyler	ne (2)					
0.0935	-0.204	0.5441	-0.597					
0.1978	-0.392	0.6528	-0.516					
0 2684	-0.495	0.7246	-0.437					
0.2001	-0.550	0 7851	-0.353					
0.30210	-0.595	0.8752	-0.209					
0.0024	-0.610	0.0102	-0.107					
0.4000	-0.010	0.5000	0.107					
A(0) = -2.439, A(1) = 0.368, A(2) = 0.471 $\sigma(V^{E}) = 0.003 \text{ cm}^3 \text{ mol}^{-1}$								
m-Chloroeniline (1) + m -Xylene (2)								
0.0825	-0.064	0.5524	-0.432					
0.1574	-0.151	0.6235	-0.403					
0.2014	-0 937	0 7234	-0.315					
0.2201	_0.207	0.120-	_0 100					
0.0241	-0.040	0.0240						
0.3910	-0.404	0.0007	-0.111					
0.4870	-0.439	0.9440	-0.048					
A(0) = -1.760, A(1) = -0.101, A(2) = 1.203								

$$\sigma(V^{\rm E}) = 0.002 \ {\rm cm}^3 \ {\rm mol}^{-1}$$

Molar excess volumes for ternary i + j + k mixtures were expressed (7) as

$$V_{ijk}^{E} = x_{i}x_{j} \left[\sum_{n=0}^{2} A_{ij}(n) (x_{i} - x_{j})^{n}\right] + x_{j}x_{k} \left[\sum_{n=0}^{2} A_{jk}(n) (x_{j} - x_{k})^{n}\right] + x_{k}x_{i} \left[\sum_{n=0}^{2} A_{ki}(n) (x_{k} - x_{i})^{n}\right] + x_{i}x_{j}x_{k} \left[\sum_{n=0}^{2} A_{ijk}(n) (x_{j} - x_{k})^{n}x_{i}^{n}\right]$$
(3)

where x_i and x_j are the mole fractions of the *i*th and *j*th components in the i + j + k mixture and $A_{ijk}(n)$ (n = 0-2) etc. are the parameters characteristic of the i + j + k mixture. The parameters $A_{jk}(n)$ for j + k binary mixtures were taken from the literature (8). The parameters in eq 3 were evaluated by fitting X data to

$$X = A_{ijk}(0) + A_{ijk}(1) (x_j - x_k)x_i + A_{ijk}(2) (x_j - x_k)^2 x_i$$
(4)

Figure 2. Molar excess volumes, V^{E} , of the *m*-chloroaniline (1) + benzene (2) + o-xylene (3) mixture at 308.15 K.

Table 3. Molar Excess Volumes of Ternary Systems and Parameters Along with Standard Deviations $\sigma(V^{\mathbb{Z}})$ at 308.15 K

\boldsymbol{x}_1	x2	$V^{\mathbf{E}}/(\mathbf{cm^{3}\cdot mol^{-1}})$	$\boldsymbol{x_1}$	x2	$V^{\mathbf{E}}/(\mathbf{cm^{3}\cdot mol^{-1}})$			
m-Chloroaniline (1) + Benzene (2) + Toluene (3)								
0.0370	0.0959	-0.031	0.2892	0.5178	-0.242			
0.0530	0.9390	-0.069	0.3850	0.3008	-0.278			
0.0612	0.1662	-0.044	0.4302	0.4001	-0.313			
0.0728	0.6612	-0.023	0.5208	0.0812	-0.359			
0.1034	0.7889	-0.105	0.5691	0.2550	-0.300			
0.1425	0.5301	-0.085	0.6421	0.3021	-0.316			
0.1602	0.6128	-0.123	0.6817	0.1231	-0.273			
0.1830	0.7202	-0.204	0.7228	0.1419	-0.238			
0.1856	0.1532	-0.186	0.7468	0.2018	-0.299			
0.2210	0.4492	-0.162	0.7889	0.0912	-0.199			
$\begin{array}{l} A_{123}(0) = 2.500, A_{123}(1) = 7.207, A_{123}(2) = -1.730 \\ \sigma(V^{\rm E}) = 0.002 \ {\rm cm^3 \ mol^{-1}} \end{array}$								
m-Chloroaniline (1) + Benzene (2) + o -Xylene (3)								
0.0162	0.9064	0.032	0.4212	0.0912	-0.244			
0.0430	0.5506	0.167	0.4982	0.0754	-0.258			
0.0446	0.6623	0.136	0.5106	0.4006	-0.359			
0.0630	0.2629	0.071	0.5817	0.2822	-0.306			
0.0721	0.7128	0.050	0.6206	0.1702	-0.261			
0.1399	0.1214	-0.074	0.6923	0.1721	0.260			
0.1530	0.5830	-0.052	0.7108	0.0506	-0.206			
0.2569	0.0105	-0.175	0.7817	0.0312	-0.169			
0.3127	0.2889	-0.199	0.8006	0.0818	-0.158			
0.3652	0.4574	-0.282	0.9408	0.0280	-0.043			
$A_{123}(0) = -0.758, A_{123}(1) = 7.643, A_{123}(2) = 1.054$								
$\sigma(V^{\rm E}) = 0.003 \ \rm cm^3 \ mol^{-1}$								

where

$$X = \{V_{ijk}^{\mathbf{E}} - x_i x_j [\sum_{n=0}^{2} A_{ij}(n) \ (x_i - x_j)^n] - x_j x_k [\sum_{n=0}^{2} A_{jk}(n) \ (x_j - x_k)^n] - x_k x_i [\sum_{n=0}^{2} A_{ki}(n) \ (x_k - x_i)^n] \} / x_i x_j x_k$$
(5)

by a le ast-squares method. The values along with the standard deviation $\sigma(V^{\rm E})$ of $V^{\rm E}$ are recorded in Table 3. The choice of *n* to have 0-2 or 3 values was dictated by consideration that the maximum deviation $\sigma_{\rm m}(V^{\rm E})$ of $V^{\rm E}$ satisfies the relation $\sigma_{\rm m}(V^{\rm E}) \leq 2\sigma(V^{\rm E})$.

There are no literature values of $V^{\rm E}$ for the binary and ternary mixtures with which to compare our results. $V^{\rm E}$ values for studied binary mixtures are negative over the entire range of composition and for an equimolar mixture vary in the order o-xylene > toluene > m-xylene > benzene > p-xylene. $V^{\rm E}$ values for m-chloroaniline (1) + benzene (2) + toluene (3) mixtures are negative over the whole composition range; the sign of $V^{\mathbb{E}}$ for *m*-chloroaniline (1) + benzene (2) + o-xylene (3) mixtures are dictated by the relative proportion of various components.

Acknowledgment

The authors would like to thank the Head of the Chemistry Department for providing laboratory facilities.

Literature Cited

- Vogel, I. A. A Text Book of Practical Organic Chemistry, 3rd ed.; English Book Society and Longman Group: Harlow, U.K., 1950.
 Few, A. V.; Smith, J. W. J. Chem. Soc. 1949, 753.

- Forziati, A. F.; Glasgow, A. R., Jr.; Williangham, C. B.; Rossini, F. D. J. Res. Natl. Bur. Stand. 1946, 36, 129.
 White, J. D.; Rose, F. W., Jr. J. Res. Natl. Bur. Stand. 1932, 9, 711.
 Robert, C. W. CRC Hand Book of Chemistry and Physics, 59th ed.; CRC Press Inc.: Boca Raton, FL.
 Singh, P. P.; Sharma, S. P. J. Chem. Eng. Data 1985, 30, 477.
 Wisniak, J.; Tamir, A. Mixing and Excess Thermodynamic Properties: Elsevier Scientific Publishing Co.: New York, 1978.
- ties; Elsevier Scientific Publishing Co.: New York, 1978.
 (8) Singh, P. P.; Nigam, R. K.; Sharma, S. P. Thermochim. Acta 1983,
- 63, 237.

Received for review April 29, 1993. Accepted October 25, 1993.

• Abstract published in Advance ACS Abstracts, December 1, 1993.